欢迎登录材料期刊网

材料期刊网

高级检索

以微孔模板剂四丙基氢氧化铵为单一模板剂,采用一种温和的低温水热一锅法工艺,成功制备出多级结构ZSM-5沸石(HSZs)。与传统的双模板法和后处理法相比,这种结合了沸石生长与后刻蚀于一体的新方法,不仅减少了模板剂的用量及二次酸/碱刻蚀、煅烧造成的环境污染,同时也极大地简化了合成工艺。利用XRD, N2吸附, SEM, TEM, XRF,27Al NMR与NH3-TPD等测试手段对合成的HSZs进行了全面表征,并提出了一种“成核/生长-刻蚀/再晶化”的形成机理。与传统ZSM-5沸石相比,这种具有均一梭型形貌的HSZs具有高的水热稳定性,并在三异丙苯催化裂解的探针反应中表现出优异催化性能和较长使用寿命。

An easy one-step hydrothermal process has been developed for the first time for the synthesis of hierarchically structured zeolites (HSZs) using a single micropore template of tetraprop-ylammonium hydroxide. Compared with conventional constructive dual-templating synthesis and destructive post-demetallation methods, this two-in-one process reduces the mass of porogens required and consequent air pollution by combustion of the template, and simplifies the synthesis. The resultant HSZs were characterized by X-ray diffraction, N2 adsorption, scanning electron microscopy, transmission electron microscopy, X-ray fluorescence, 27Al nuclear magnetic resonance, and NH3 temperature programmed desorption. The resultant HSZs with uniform shuttle-type morphology showed high hydrothermal stability and excel-lent catalytic activity with prolonged life-time in the model reaction of 1,3,5-triisopropylben-zene cracking. A “nucleation/growth-demetallation/recrystallization” mechanism was pro-posed, which is featured with the integration of zeolite crystallization/growth and basic etch-ing into one hydrothermal process for HSZs production.

参考文献

[1] Corma A. .State of the art and future challenges of zeolites as catalysts [Review][J].Journal of Catalysis,2003(1/2):298-312.
[2] Primo A;Garcia H .[J].CHEMICAL SOCIETY REVIEWS,2014,43:7548.
[3] Urata K;Furukawa S;Komatsu T .[J].Applied Catalysis A:General,2014,475:335.
[4] Schmidt, F.;Hoffmann, C.;Giordanino, F.;Bordiga, S.;Simon, P.;Carrillo-Cabrera, W.;Kaskel, S..Coke location in microporous and hierarchical ZSM-5 and the impact on the MTH reaction[J].Journal of Catalysis,2013:238-245.
[5] Mei CS;Wen PY;Liu ZC;Liu HX;Wang YD;Yang WM;Xie ZK;Hua WM;Gao Z .Selective production of propylene from methanol: Mesoporosity development in high silica HZSM-5[J].Journal of Catalysis,2008(1):243-249.
[6] Kim, J.;Choi, M.;Ryoo, R. .Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process[J].Journal of Catalysis,2010(1):219-228.
[7] Hu Y Y;Liu C;Zhang Y H;Ren N Tang Y .[J].Microporous and Mesoporous Materials,2009,119:306.
[8] Kim J C;Cho K;Ryoo R .[J].Applied Catalysis A:General,2014,470:420.
[9] Choi M;Cho H S;Srivastava R;Venkatesan C Choi D H Ryoo R .[J].NATURE MATERIALS,2006,5:718.
[10] Perez-Ramirez J;Christensen C H;Egeblad K;Christensen C H Groen J C .[J].CHEMICAL SOCIETY REVIEWS,2008,37:2530.
[11] Choi M;Na K;Kim J;Sakamoto Y Terasaki O Ryoo R .[J].NATURE,2009,461:246.
[12] Moliner M;Rey F;Corma A .[J].ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,2013,52:13880.
[13] M?ller K;Bein T .[J].CHEMICAL SOCIETY REVIEWS,2013,42:3689.
[14] Meng X J;Xiao F S .[J].CHEMICAL REVIEWS,2014,114:1521.
[15] Ji Y J;Xu H;Wang D R;Xu L Ji P Wu H H Wu P .[J].ACS Catal,2013,3:1892.
[16] Jin H L;Ansari M B;Jeong E Y;Park S E .[J].Journal of Catalysis,2012,291:55.
[17] Hamdy M S;Mul G .[J].ChemCatChem,2013,5:3156.
[18] Tang B;Dai W L;Sun X M;Guan N J Li L D Hunger M .[J].Green Chemistry,2014,16:2281.
[19] White R J;Fischer A;Goebel C;Thomas A .[J].Journal of the American Chemical Society,2014,136:2715.
[20] Emdadi L;Wu Y Q;Zhu G H;Chang C C Fan W Pham T Lobo R F Liu D X .[J].CHEMISTRY OF MATERIALS,2014,26:1345.
[21] Emdadi L;Liu D X .[J].J Mater Chem A,2014,2:13388.
[22] Na K;Jo C;Kim J;Cho K Jung J Seo Y Messinger R J Chmelka B F Ryoo R .[J].SCIENCE,2011,333:328.
[23] Zhou, J;Hua, ZL;Shi, JL;He, QJ;Guo, LM;Ruan, ML .Synthesis of a Hierarchical Micro/Mesoporous Structure by Steam-Assisted Post-Crystallization[J].Chemistry: A European journal,2009(47):12949-12954.
[24] Zhou J;Hua Z L;Liu Z C;Wu W Zhu Y Shi J L .[J].ACS Catal,2011,1:287.
[25] Zhu, Y.;Hua, Z.;Zhou, J.;Wang, L.;Zhao, J.;Gong, Y.;Wu, W.;Ruan, M.;Shi, J. .Hierarchical mesoporous zeolites: Direct self-assembly synthesis in a conventional surfactant solution by kinetic control over the zeolite seed formation[J].Chemistry: A European journal,2011(51):14618-14627.
[26] Liu, J.-Y.;Wang, J.-G.;Li, N.;Zhao, H.;Zhou, H.-J.;Sun, P.-C.;Chen, T.-H. .Polyelectrolyte-surfactant complex as a template for the synthesis of zeolites with intracrystalline mesopores[J].Langmuir: The ACS Journal of Surfaces and Colloids,2012(23):8600-8607.
[27] Pérez-Ramírez J;Abelló S;Bonilla A;Groen J C .[J].Advanced Functional Materials,2009,19:164.
[28] Pérez-Ramírez J;Verboekend D;Bonilla A;Abello S .[J].Advanced Functional Materials,2009,19:3972.
[29] Milina M;Mitchell S;Michels N L;Kenvin J Pérez-Ramírez J .[J].Journal of Catalysis,2013,308:398.
[30] Abelló S;Bonilla A;Pérez-Ramírez J .[J].Applied Catalysis A:General,2009,364:191.
[31] Garcia-Martinez J;Li K H;Krishnaiah G .[J].Chemistry Communications,2012,48:11841.
[32] Verboekend, D.;Pérez-Ramírez, J. .Desilication mechanism revisited: Highly mesoporous all-silica zeolites enabled through pore-directing agents[J].Chemistry: A European journal,2011(4):1137-1147.
[33] Li, B.;Sun, B.;Qian, X.;Li, W.;Wu, Z.;Sun, Z.;Qiao, M.;Duke, M.;Zhao, D. .In-situ crystallization route to nanorod-aggregated functional ZSM-5 microspheres[J].Journal of the American Chemical Society,2013(4):1181-1184.
[34] Cundy, CS;Cox, PA .The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism[J].Microporous and Mesoporous Materials,2005(1/2):1-78.
[35] Yoo W C;Zhang X Y;Tsapatsis M;Stein A .[J].Microporous and Mesoporous Materials,2012,149:147.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%